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Abstract

A somewhat generalized numerical procedure is used in this paper to study the problem of wave scattering by
circumferential cracks in composite pipes. The study is motivated by the need to develop a model for the quantitative,
ultrasonic non-destructive evaluation of cracks in pipes. For this purpose, a stiffness-based Rayleigh-Ritz type ap-
proach is employed first to obtain the approximate wave numbers and wave modes. Using the wave function expansions
of the incident and scattered fields in the axial direction and decomposing the problem into separate symmetric and
anti-symmetric problems, a three-dimensional wave scattering problem is reduced to two, independent two-dimensional
problems over the circular cross-section. Both these problems can be reduced further to quasi-one-dimensions by
discretizing the cross-section into finite elements and using a transfer matrix approach in the circumferential direction.
This simplification greatly reduces the computational time. A comparison of the results for an isotropic pipe demon-
strates the reliability and accuracy of the modified numerical procedure. Numerical results for the reflection and
transmission coeflicients of different incident wave modes are also presented for a 2-ply composite pipe with a crack.
The crack may have an arbitrary circumferential length and radial depth. Simple extrapolations from one wave to
another wave, separately incident on a crack, are demonstrated to be impossible due to different mode conversions by
the crack.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Metallic and composite circular tubes and pipelines are used extensively in the energy and transpor-
tation industries. Damage to these structures occurs due to handling, service load, natural disturbances,
and environmental causes. Of particular interest to this study is the cracking that occurs in pipelines used
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in the oil, gas, and petrochemical industries. Ultrasonic non-destructive techniques are being developed for
the inspection of such industrial pipelines. Ultrasonic waves in pipes can be generated quite efficiently by
ring transducers (see Alleyne et al., 1998; Lowe et al., 1998) for launching waves that propagate along a
pipe’s axis. A major problem that is faced in the ultrasonic evaluation of pipes is the presence of a pro-
tective coating or insulation on the outside of the pipe wall. The coating or insulation material is much
softer than the pipe’s material and usually has a high wave attenuation. Access to the pipe from outside is
difficult and various devices for access from inside the pipe have been under development. Also, ultrasonic
waves propagating in the pipe wall can be modified by the coating or insulation layer. In a recent paper,
Pan et al. (1999) examined the effect of a soft viscoelastic layer on guided ultrasonic waves in a bilayered
plate. It was found that certain (Lamb wave) modes in a single layer steel plate are preferable for the
inspection of damage because they do not suffer significant modification by the soft layer. Thus, mode
selection plays a very important role in the success of ultrasonic non-destructive evaluation (NDE) tech-
niques.

Guided waves in cylindrical tubes are similar in nature to the ones in plates although many more modes
are excited in tubes (Alleyne et al., 1998). This makes an appropriate mode selection very critical for the
success of an ultrasonic technique for pipeline inspection. The problem is complicated further if there are
large cracks in the pipe wall. Thus, it is important to have accurate theoretical studies of ultrasonic wave
propagation and scattering in cylindrical tubes.

As shown in previous studies (Kohl et al., 1992; Rattanawangcharoen, 1993; Rattanawangcharoen et al.,
1994, 1997; Zhuang et al., 1997), the hybrid method is effective for axisymmetric scattering problems.
However, for the three-dimensional scattering problem considered by Alleyne et al. (1998), the hybrid or
full finite element method entails considerable computational costs. The objective of the present study is to
present a more efficient, combined analytical/numerical technique for the investigation of three-dimen-
sional scattering in a cylindrical tube. The cylinder is assumed to be composed of cylindrically ortho-
tropic, fiber-reinforced composite materials. In order to model scattering by a part or full circumferential
crack located in a cross-section of the cylinder, the problem is subdivided into a symmetric and an anti-
symmetric problem about the plane of the crack. In order to decompose the original problem, the material
of the cylinder must have a plane of symmetry, for example z = 0 where z is the axial direction. This
approach has been used by Zhuang et al. (1999) to compute the Green’s function for a cylindrical shell. A
similar approach was also taken in Bai et al. (2001) to study scattering by a planar crack in a homogeneous
isotropic cylinder. References to other related work can be found in Bai et al. (2001). In the present study
and Bai et al. (2001), the crack can have an arbitrary depth in the radial direction. The scattered wave
fields are expressed as sums of admissible wave functions in the axial direction. The cross-section of the
tube, in which the crack is located, is divided into six-node planar elements and boundary conditions
appropriate for the symmetric and anti-symmetric problems are imposed on these elements. Using a
transfer matrix approach, each problem can be simplified to a quasi-one-dimensional problem. Unlike the
isotropic cylinder, however, analytical solutions for cylindrical orthotropic materials are not in closed
form. Therefore, they are computed here by using a finite element procedure in the radial direction. It is
interesting to note, on the other hand, that this additional procedure hardly changes the overall compu-
tational time.

The crack considered is an ideal mathematical crack occupying an area located in the plane z = 0. It can
have an arbitrary length in the circumferential direction and an arbitrary depth in the radial direction. The
geometry of the cylinder and crack is shown in Fig. 1. The objective of this study is to investigate, for the
first time, the extent to which the length and depth of a circumferential crack introduces wave scattering in
a composite pipe. Consequently, reflection and transmission coefficients are presented for a cracked,
laminated composite cylinder and various incident wave modes. The principle of energy conservation is
used to ensure the accuracy of the numerical computations.
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Fig. 1. Geometry of a composite cylinder. R;: inner radius, R,: outer radius, d: crack depth starting from cylinder’s outer surface, 0,:
circumferential crack angle. The shadow region represents the crack.

2. Formulation

An infinitely long laminated circular cylinder is considered. The cylinder may be composed of layers or
laminae having distinct mechanical properties and thicknesses. The circumferential crack, with arbitrary
length and depth, is located at z = 0. The cylinder is discretized first through the thickness to model the
radial inhomogeneity and to compute the wave numbers and corresponding wave functions. During the
calculation of the reflection and transmission coefficients, the cylinder is discretized in both the circum-
ferential, 0, and radial, r, directions over the cross-section z = 0. A time harmonic incident wave is gen-
erated at z = +oo that travels in the negative z-direction. It has an angular frequency w and wave number
&u In which k denotes the circumferential wave number and / is the axial wave mode. Because of the
linearity of the governing equations and boundary conditions at z = 0, superposition can be used. The
assumption of cylindrical orthotropicity implies that waves traveling in the positive and negative z-
directions have the same wave numbers (Rattanawangcharoen et al., 1994). This assumption is needed for
the symmetrical and anti-symmetrical decompositions to be valid. The displacement and traction com-
ponents at the plane z =0 can be arranged into two groups. One group involves the prescribed dis-
placement components in the radial and circumferential directions as well as the prescribed traction
component in the axial direction. The other group contains the axial displacement component and the
traction components in the radial and circumferential directions. It can be shown that the quantities in
the first group are known when the external forces are symmetric about the plane z = 0. On the other
hand, quantities in the second group are known if the external forces are anti-symmetric about z = 0.
In either case, only half the cylinder (z = 0) needs to be modeled. Using superposition of the solutions for
the two individual problems, a complete solution can be constructed for the general three-dimensional
case.

In the numerical procedure, a wave function expansion is used to represent the three dimensional, in-
cident and scattered wave fields travelling in the axial direction. Then the displacement and traction
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boundary conditions are satisfied in accordance with the symmetry and anti-symmetry conditions. Details
can be found in Bai et al. (2001).

2.1. Wave modes

Consider the cylindrical coordinates (r, 0,z) where the origin is located at the center of the cylinder’s
cross-section (see Fig. 1). The displacement, strain, and stress components are defined as,

i(r,0,2;0) = (ur,ug,u.)", (1.1)

E(}", 97 zZ t) = (8,,«7 €00, 8225 Y0z Vs ’yr())T (12)
and

62(”7 972; t) = (O-rra 000502z, 00z, Ozpy 0-7'0>T- (1 3)

Here, superscript ‘T’ represents the transpose. The general relation between the stress and strain compo-
nents in a typical sublayer is,

¢ = DE, (1.4)
where D is a 6 by 6 matrix of cylindrically orthotropic elastic moduli with the unique axis coinciding with
the z-axis. The strain—displacement relation can be written as,

ou 1 _ou o 1

where
1 00 00 0 000 0 0 0
00 0 01 0 0 0 0 1 0 0
0 0 0 00 0 0 0 1 0 0 0
E=1o 0 ol" "=loo 1| B=lo 1 0" P=|o 0o o (1.6)
0 0 1 00 0 1 00 0 0 0
010 1 00 00 0 0 -1 0

Since the laminated cylinders are considered anisotropic and each lamina is a separate entity enjoying
distinct mechanical properties and thickness, a Rayleigh—Ritz type approach is employed to approximate the
wave number and functions. Details of the Rayleigh—Ritz type finite element method used can be found in
Huang and Dong (1984) as well as in Datta (2000). Only a brief summary of the approach is presented here.

The displacement components, u,, uy, and u., in the cylindrical coordinates, r, 0, and z, respectively, of
the kth layer, which is bounded by r; and 7, are approximated by interpolation polynomials in the radial
direction as,

i(r,0,z;t) = N(1)4(0,z;1), (1.7)
with
VZ”l(’?)”k +n2(7’)rm +n3(’7)rk+la (18)

n 0 0 ny 0 0 ns 0 0
N(i]) = 0 n 0 0 ny 0 0 ns 0 N (19)
0 0 n 0 0 ny 0 0 ns

G(0,z,1) = (U1, g1, Uz, U, Ugn, Uzz, U3, Ugs, Mz3)T. (1.10)
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In (1.7), the nodal displacements u,;, ug;, and u;, j =1, 2, 3, are taken at the back (inner, » = r;,), middle
(r = rn), and front (outer, » = ;1) surfaces of the sublayer, respectively. The interpolation polynomials, #;,
are quadratic functions given by,

m@m) =’ =n), mMm)=1-n", nmm)=in"+n), —-1<n<1. (1.11)

By using Hamilton’s principle, the governing equation is formulated for the entire cylinder as,

? ? 20 0 0 ?
Q+Kz0 Q+K00 Q+K—Q+K0—Q—KQ MaﬂQ

K 0200 20? oz o0

0 = 0. (1.12)

Here, K., K.y, Kg9, K., and M are real and symmetric whereas K, and Kj are real and anti-symmetric. The
vector Q contains the nodal displacements along the radius in the cylinder.
A solution representing harmonic wave propagation for Eq. (1.12) can be assumed to take the form,

0(0,z,1) = Qe "), (1.13)

where Oy represents the nodal amplitude vector, i = / — 1, ¢ is the wave number in the z-direction, m is the
circumferential wave number, and o is the circular frequency. Substituting Eq. (1.13) into (1.12) results in
the following set of linear homogeneous equations,

(— 62K0+1€K1 —Kg)éo—f—a)zMQo :07 (114)
where
Ko=K.., KA =imKy+K., K,=mKy —imK,+K,. (1.15)

On the other hand, Eq. (1.14) provides the dispersion relation for the cylinder for a given value of fre-
quency, w. The quadratic algebraic eigenvalue problem (1.14) can be rearranged as,

0 1 O | _ [ 0
[sz_K2 Kl]{fé)o}_é{ KO}{féoo}' (1.16)

The eigenvalues of the general eigenvalue problem (1.16) are the wave numbers, ¢. The upper half of the
eigenvector corresponding to ¢ is the wave function, Q.

2.2. Modal expansion

The method detailed by Bai et al. (2001) is discussed briefly here. Assume that the incident wave field is
generated at z = oo and travels in the negative z-direction. Scattering (both reflection and transmission)
occurs when the incident wave strikes the crack located at z = 0. The scattered wave field is composed of a
finite number of propagating modes and an infinite number of non-propagating modes. Due to the sym-
metry and anti-symmetry about z = 0, only the reflected wave field needs to be evaluated in the positive
z-direction. The displacements can be expanded as,

M Nn
_ § i&nz 1m0 —uul _ E im0 —m)l
u,.(Q, Z, t) - ak/,mnur,mne " akl m Ur mEm ) )
m=—M n=1
M N
_ E i€z 1m() —iwt __ E 1m0 —iwt
MH(H,Z, t) - akl,mnu(?,mne " aklmUHm m ) 9 (21)
m=—M n=1
M Np
_ § i&unz 1m€ —w)t _ § 1m(9 —w;t
Z’tz(ga z, t) - akl,mnuz,mne " Aagy, m Uz mEm )

m=—M 1 m=—M

3
Il
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where
NPxN,
Upm = (Ut Urp2 =+ Upy, ) € CT77,
NPxN,
U(),m - (uﬁ,ml Ugmz - U mN,, ) eC 3 (22)
NP XN,
Uz,m = (“z,ml uz,mZ e uzAmNm ) S C 5
NPx1 .
Upmjy UWomjs Uzmj € C y J= 1727'--3va (23)
T N %1
agm ={ @ @2 - auan, ) €C (2.4)
and
E,(2) = diag[eln® elonr ... gitwn] € O, (2.5)

Here, NP is the number of nodal points in the radial direction and ay,,,, are unknown complex coefficients
that are to be determined. The u, ,;, ug,; and u.,,; (j =1,2,...,N,) are wave functions corresponding to
the wave number, &,,,. N,, is the number of the axial wave mode corresponding to the circumferential wave
number m. In ay ., the first two subscripts, k& and /, indicate the wave numbers in the circumferential and
axial directions, respectively, of the incident wave. The last two subscripts refer to the coefficients of the
scattered wave fields corresponding to the wave numbers, m and n, in the circumferential and axial di-
rections, respectively. The symbol x € C"*" means that x is a complex matrix of order m by n. It may be
pointed out that the number of axial modes, N,,, need not be the same for different circumferential wave
numbers, m. The factor e7* is suppressed for convenience in the sequel.

The stress components .., 6.9 and g, at the discrete nodal points of the kth sublayer can be obtained by
using the stress—strain and strain—displacement relations. At each sublayer, the stress components also have
a similar expansion as Eq. (2.1). Note that the stress components may not be continuous at the interfaces
between the sublayers. With knowledge of the stresses, consistent nodal forces can be derived by using a
standard procedure (see Bathe, 1982). The cross-section z = 0 is discretized into planar, nine-node quad-
rilateral elements.

2.3. Governing equations for the scattering problem

After decomposing the original problem into two separate problems, it is necessary to consider only half
(z = 0) the cylinder. Hence, only boundary conditions at the end z = 0 have to be satisfied. Because of the
crack’s existence in the cross-section, care must be taken on this part of the cross-section when dealing with
the boundary conditions. Traction-free boundary conditions are imposed on the crack face for both the
symmetric and anti-symmetric cases. Therefore, for the symmetric case, the boundary conditions are given

by,
St SR
SSI+SR:{ ]c}+{ CR}:(), atz =0, (3.1)
SN SN
with
1 1 R R
SIC: HI ) SII\I: HI ) ng GR ) ng HR (3-2)
1 uI R uR

z z z z
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and, for anti-symmetry, they are,

A=dl s 4R = [4c Ac | _ ~0 33
- + - Al + AR - Y% at z = ) ( . )
N N
with
/! u, A us
Ag = f;,i , Ay = u(l{ , AR = fg; , AN = uz (3.4)
1 /- 1 /:

Here f,, fy and f, are the consistent nodal force components in the r, 6, and z-directions at the boundary
z = 0, respectively. Superscripts ‘I’ and ‘R’ represent, respectively, the quantities associated with the inci-
dent and scattered wave fields. Subscripts ‘C’ and ‘N’ are used to denote a point in the cracked and un-
cracked region, respectively. Without loss of generality, the nodal sequence is assumed to be arranged such
that the first Pc points are located in the cracked region. The remaining Py = P — Pc points are located in
the uncracked region. It should be pointed out that Eqs. (3.1) and (3.3) are satisfied at each node that
coincides with the boundary z = 0.

Consider, first, the symmetric case. It should be noted that when the mixed displacement and force
components f,, fp and u, are known, the dual components u,, uy and f; are unknown for a point located in
the uncracked region and vice versa. In the cracked region, all the force components are known and the
corresponding dual displacement components are unknown.

At the cross-section z = 0, it is seen that

E,(0) =diag[1 1 --- 1]&RY", (3.5)
The vectors S and SR appearing in Eq. (3.1) may be written as,
Sg =Gta, S} =GRa, (3.6)
where
GE = [Gng e Ggm T GEM] € C3PCXNT7 (3 7)
Gy=[GR oy ~ OX,  ORyle O '
a={au-mu - AGum ‘- Aaum }T e M (3.8)
and
Fg,r,m Fls,r,m
Ggm = FCR.,G‘m € C3PCXNM7 GEm = Fl\ll{ﬂ.,m € C3PNXNM' (39)
FCR,z,m Uﬁz,m

The total number of wave modes, Nt, considered in the wave function expansion is

M
Nr= Y Nu, (3.10)

m=—M

where N,, corresponds to the axial mode involving the circumferential number m. The a4, is given by Eq.
(2.4). The specific forms of matrices ., F&g 00 F&o s FX s FR o and UY _, are not given here as they can
be found in Bai et al. (2001). ' - -

In a similar manner, the incident wave field, S', can be constructed as,

S[c = allclgéj,kh SII\I = allc/gll\l,kl' (3.11)
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Here, a}, is the amplitude of the incident wave and g ,, is the vector obtained from the /th column of the
matrix ng by replacing each force component in the r- and 6-directions by its negative value. Similarly,
vector gy, is obtained from the /th column of matrix Gy, by replacing each z direction force component by
its negative value. '

Eq. (3.1), see also Eq. (3.6), is solved by using the principle of virtual work. Then vectors 7% and Ty,
which are the dual components of the vectors Sg and SR, are formed as,

R R
TR:{;ER} - [ZR}“ (3.12)
with
G B E I 1)
uf sz
and
HE=[HR,, -~ HE, - HE,]eCroM -
H15 — [HNR,—M HNR.m HII\IQ,M] e C3xler .
Ug, UR,.
HE, = | Uy | € CTM HY, = | Uny,, | € C (3.15)
ngm Fl\l}zm

The specific form of the block matrices appearing in Eq. (3.15) can be found in Bai et al. (2001).
The principle of virtual work is applied by pre-multiplying the boundary conditions (3.1) by the dual
components 78 and 7§, so that,

HR1'[G HR]" [ &
e ) (G Jo= bl | {afe ) 316

The superscript * denotes the complex conjugate plus matrix transpose.

The solutions of Eq. (3.16) give the reflection coefficients that are associated with the wave modes.
Having found these coefficients, values of the displacement are readily obtained at different locations in the
cylinder.

2.4. Reduction to quasi-one-dimensional problem

It should be noted that Eq. (3.16) is derived by using pointwise conditions. This is a computationally
demanding procedure due to the large number of nodes of the two-dimensional mesh in the plane z = 0, as
shown in Fig. 2. If a transfer matrix from radius to radius is considered, instead of a point to point transfer,
calculations can be performed more efficiently. This idea is based upon the circular symmetry of the ge-
ometry and the physical characteristics of the problem (see expansion (3.1)).

Consider the two vectors fc . € CPel and SNy € C™<1 which are located in the nth column of the
matrices /¢, and F{,,. It should be noted that these two Vectors are evaluated at all the nodes of the
cracked and uncracked regions, respectively. First construct two vectors fC - and fN »mn that correspond
to these two vectors. They are evaluated at the two adjacent radii 0 = 0 and 0 = n/q, where ¢ is the number
of subdivisions in the circumferential direction. Also, denote the two radii, = 2jn/q and 0 = (2j + 1)n/q,
for j=0,1,...,9 — 1, as the jth radius pair in the following discussion. Without loss of generality, assume
that gc and gy radii pairs are located in the cracked and uncracked regions, respectively. By considering the
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2nd radius

1st radius

Fig. 2. A typical mesh in the cracked cross-section. The shadow region represents the crack.

wave functions in Eq. (2.1), it can be shown that the values of the two vectors, fc ., and fx .., on the jth
radius pair can be obtained by a simple rotation, e*”/7, of that on the first radius pair f((;r),mn and f1£11.3.mn~
Therefore, ' -

fC(jZmn = )“f;lfc(?,mm 1 g] < qc, (41)

fi\({:)r,mn = )”zilfisl{l,mn7 qc + 1 <]< q=dc + qN; (42)
where

Doy = 2, (4.3)

Thus, the vectors fc, ., and fx .. can be written more compactly as,

fC,r,mn - AC,me(T),mna fi\l.,r,mn - AN,mflillﬂzAmnv (44)

with the transfer matrices A, and Ay, given by

Aew=|T dpI - 27| € Cor1r (4.5)
and
A =M\ T 2,1 o a7T] e O, (4.6)

Here, 7 is the unit matrix of order 2p where 2p is the total number of nodes in a radius pair. With the help
of Eq. (4.4), the matrices F¢,,, and F{,,, can then be expressed as

F(},},r,m = AC:mFé?g;7 Fl\lir,m = AN,W’F;I]V)]; (47)
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The matrices FCrl}n and FN,m have similar forms to the original matrices £, and FY,, after changing
each column with fC zmn and fN ~.m» TESpectively. Using these new expressions, the matrices G? and Gy can

be shown to have the following forms

GE:[ZQ,MGQ’)}‘M s AcaGUR zcﬁMcgy;], (4.8)
8 = [An-uGl®, o AxaGUR o AnuGUR |, (49)
where
_AC,m
Acw = Acm e Coricxer (4.10)
L AC,m
and
. _AN,m
Anm = AN € CoPmN=ep, (4.11)
L AN,m

The block matrices GC X and GNm are obtained from Gg,, and Gy, by replacing the corresponding force
and displacement components with their reference vectors. The latter are evaluated only at the first radius
pair. Similar relations hold also for the matrices H¥, HY and vectors S¢, Sx.

With the above simplification, it can be shown that

(HQ)'GE = | -+ e (HOM) G | €€, (4.12)
(HR)'GE = |+ b (H ) G o [ €€V, (4.13)
(HE)'sk = { meaw (HEN) 88§ e €™, (4.14)
(HR)'S = { i (HUN) &l 3 e 07 (4.15)
and
qc, for my = myp,

=q 1=/ 4.16

tuC,mlmz my ,my ’ for m 7& o, ( )

1 — Ay my
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qN, for myp = myp,
= 1 — A 4.17
/"Ntmlmz _ Amlmz , for m ;é my, ( )
1 - /Lmlmz

Pomioms = Doy Doy = €27 (4.18)
Egs. (4.16) and (4.17) may also be written as

:uC,mlmz + :uN.,mlmz = q5m1n12, (419)
where

|1, for m; =m;,

5m1m2 o {0, for mi 7& my. (420)
Substituting Egs. (4.12)-(4.15) into Eq. (3.16) results in the final equation,

[(H8) GE + (1Y) GR]a = —ay, [(H)"Se + (HN) Sy (4.21)

§10
x 09 Previous  Present  Experimental results
08 m=0, n=1 o
m=0, n=2 —— ° A (m=0.n=2)
0.7 m=1,n=1  ------ A
06 1 m=1, n=2 -
m=1, n=3 - o

T 1.0 g==
£ = _-__
g 09 Soeelo
=0 -‘Q“—Q~__O_~__o R
o8 . TTTEEe
0.7
06
05 )
04 -
03
02
.,---—A-'""A""'-n--..._h_.
0.1 1 R . SR U
00 . ° ° ° 0 i A2
00 01 02 03 04 05 06 07 08 09 10
(b) L

Fig. 3. Reflection and transmission coefficients, |Room| and |Toom|, as functions of normalized crack length, L, in a steel pipe:
H/R =0.135, v =0.287, D = 0.55, and f = 70 kHz.
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It can be seen from Egs. (4.12)—(4.21) that all the matrices need be computed only for the first radius pair.
In other words, the circumferential discretization does not affect the size of the matrices and, hence, the
computational time. The problem is reduced now to a quasi-one-dimensional form.

When ¢c = ¢, then gy = 0. This situation corresponds to the axisymmetric crack. Then it is obvious
that pc .., =0 when my # my, ., =0 for all m; and m,, and pc,,, = ¢. Therefore, matrices
(H®)"GR and (HR)"GR are reduced to diagonal block matrices. Furthermore, (H&)'SL. and (HR)'SY in
Eqgs. (4.14) and (4.15) become null vectors. However, the kth block vector remains unchanged. Conse-
quently, the problem becomes smaller in dimension and only the wave modes related to the incident cir-
cumferential wave number k need be considered. In this situation, it is easily shown that the subdivision in
the circumferential direction does not add complexity to the numerical procedure because the parameter ¢
is eliminated from the final linear equation.

Table 1

Laminated composite cylinder’s material properties (C;; in GPa) (0° is the z-direction)
Lamina C]] C]z C13 C33 C44 P (g/cm3)
0° Inside 13.92 6.92 6.44 160.73 7.07 1.8
90° Outside 13.92 6.44 6.92 13.92 7.07 1.8

Normalized phase speed, c/cso
S 5 2 3 &

o N A O ®©
L L L L

Normalized phase speed, c/cso
o N B (o] o] 8

(b) Q

Fig. 4. Normalized phase speed versus frequency for a 2-ply [0/90] graphite/epoxy cylinder with H/R = 0.1 and (a) m =0, (b) m = 1.
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Once the linear equation (3.16) is established, the reflection coeflicients for the symmetric case can be
obtained. The solution for the anti-symmetric case can be found similarly. If the solutions of these two cases
are known, the reflection and transmission coefficients, Ry, and T;; .., for the problem considered are
derived easily as

S A

a —d
kl,mn kl,mn
) TkLmn - 2 1 9 (422)
A

S A

R _ Dt mn + akl,mn
klymn — 2 i
At

where a,f,}mn and akA,‘mn represent the solutions for the symmetric and anti-symmetric cases, respectively. The
numerical accuracy of the coefficients is checked by using the principle of energy conservation. The energy
flux associated with each propagating mode has been discussed in Rattanawangcharoen et al. (1994).
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Fig. 5. Variation of reflection coefficients with different Q for three normalized crack lengths L = 0.1 (: ), L =10.5 ( ),
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Fig. 5 (continued)

3. Numerical results and discussion

The previously described method can be used to analyze the effect of a planar crack located in a cross-
section of the cylinder. The crack can have an arbitrary angle, 0y, in the circumferential direction and an
arbitrary depth, d, in the radial direction (see Figs. 1 and 2). To demonstrate the effectiveness and versatility
of the proposed method, the following two illustrative examples are considered:

1. a homogeneous isotropic hollow cylinder; and
2. a 2-ply [0/90] graphite/epoxy hollow cylinder.

In both examples, H and R are the total thickness and mean radius of the cylinder, respectively. A
normalized frequency, 2, and normalized wave number, 7y, are defined as,

w <

) ,)) = )
Dref éref

Q:
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where w.r and &, are the reference frequency and reference wave number, respectively. Furthermore, the
results are presented for a normalized crack length, L = R6,/2nR and a normalized crack depth, D = d/H.

The total number of sublayers Ny (or p) used in computing the discrete wave functions, the total cir-
cumferential wave number M, and the corresponding axial wave number N,, for each m (—M <m < M)
used in the wave function expansion are chosen to assure accuracy. The choice of these values is such that
the coefficients in Eq. (2.1) converge and energy conservation is satisfied.

Example 1. This example is used solely to validate the present numerical procedure. The reflection of the
second, essentially non-dispersive axisymmetric wave L(0,2) is considered in a hollow cylinder. Poisson’s
ratio, v, is taken to be 0.287, the thickness over the mean radius, H/R, is chosen as 0.135 and Young’s
modulus is 216.9 GPa. The crack length is 50% of the circumferential length and the crack depth is 55% of
the thickness. The reference frequency and wave number are,

Wref = H \/7 éref

where p is the shear modulus and p is the mass density of steel. The material constants correspond to the
longitudinal and torsional wave velocities that are given, respectively, by

c1 =5.96 x 10° m/s, ¢, =3.26 x 10° m/s.
Moreover, 20 sublayers and 23 circumferential wave numbers (M = 11) with Ny =48, N, =41 (1<
|m| < 11) are employed.
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Fig. 6. Reflection and transmission coefficients, |Ro; o,| and |Tp1 0./, as functions of normalized crack depth, D, in a 2-ply [0/90] graphite/
epoxy cylinder at @ =3.0: H/R=0.1, and L = 1.0.
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This particular problem was investigated experimentally and numerically by Alleyne et al. (1998) and by
Lowe et al. (1998). The inner radius, R;, and thickness, H, of the pipe are invariably,

R; = 38 mm, H =5.5 mm.

Fig. 3 shows the computed normalized reflection and transmission coefficients in comparison to those of
Bai et al. (2001) who used exact wave functions. Such analytical expressions do not generally exist, how-
ever, so that the analogous results obtained here are determined by using a semi-analytical finite element
approximation. Regardless, agreement between the two sets of computed data and the experimental results
is always close in Fig. 3(a). Furthermore this figure has the interesting feature that [Ro,,| and [Tz,
m =0, n =1, 2, are invariably linear functions of the length, L, of the crack. Such a simple relationship
should enable L to be found more readily from these particular coefficients.
The second example considered is a composite cylinder.

Example 2. The scattering of an incoming propagating wave is also considered in a two-ply [0°/90°]
graphite/epoxy cylinder. The thickness of each sublayer is taken to be equal, i.e. H; = H, = 0.5 so that
H = H, + H, = 1.0. Elastic properties of each ply are listed in Table 1.

|RO1,mn|

—8—m=0,n=1 —A—m=0,n=2 —6e—m=0, n=3 A
--&--m=1,n=1 --4--m=1,n=2
--4--m=1,n=4 --%--m=1,n=5

0.6 1

Fig. 7. Reflection and transmission coefficients, |Roim| and |Ty .|, as functions of normalized crack length, L, in a 2-ply [0/90]
graphite/epoxy cylinder at @ =3.0: H/R = 0.1, and D = 0.5.
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Fig. 8. Variation of reflection coefficients with different Q for three normalized crack lengths, L = 0.1 ( ), L=10.5 ( ),
L =1.0(----),in a 2-ply [0/90] graphite/epoxy cylinder. H/R = 0.1, D = 0.5, and (a) |Ry101|, (b) [Ri1.02]> () [Ri1,03]> (d) [Ri1.11], (€) |R1112],
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The reference frequency and wave number are now,

oo L fresy
ref H P 007 ref H

Moreover H /R is always 0.1 and the crack depth is invariably 50% of the thickness, i.e. the crack extends
through the thickness of the 90° ply. On the other hand, the crack length is changed from 10% to 50% and
100% of the circumferential length. Note that, in the last case, the problem is axisymmetric so that only the
m = 0 modes are excited.

Fig. 4 shows the phase velocity versus frequency in the range 1 < Q < 8 for the corresponding uncracked
cylinder. Numerical results for a cracked composite cylinder shown in Figs. 5 and 8, on the other hand, are
restricted to 1 < Q<3 (i.e. the frequency-thickness product, fH, is between 0.3 < fH < 0.9 mm/ps) in order
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Fig. 8 (continued)

to limit the number of propagating modes. Indeed, if Q is no greater than 3, Fig. 4 shows that there are only
three and five propagating modes for m = 0 and 1, respectively. In addition, there are merely five propa-
gating modes for 2 <m <4, and four propagating modes for m = 5. Moreover, for m = 0, the first cutoff
frequency is Q = 2.523; for m = 1, the cutoff frequencies for the fourth and fifth modes are, respectively,
2.525 and 2.545 and, for m = 2, they are 2.531 and 2.600. It can be seen from Fig. 4 that the L(0,1) and
F(1,1) modes are almost non-dispersive in the normalized frequency range 1< Q<3 so that they are
chosen as the incident wave modes in this example. After a preliminary check of the convergence of the
reflection coefficients and energy conservation, 16 sublayers were employed to discretize a cracked cylinder
in the radial direction and 23 circumferential wave numbers (M = 11) were used. For m = 0, Ny = 30 was
found to give good results. For 1< |m| <11, it was necessary to employ N,, = 43.

Fig. 5 shows the reflection coefficients for different modes when the incident mode is L(0, 1). The figure
indicates that sharp peaks occur for the reflection coefficients around the first cutoff frequency, © = 2.523.
When the excitation frequency is below this particular cutoff frequency, |Ry; 01| is more sensitive, at a given
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Q, to any one crack length than the other reflection coefficients shown. Conversely, |Ro; 02| becomes most
sensitive to a crack when Q is above the cutoff frequency. Clearly, the waves reflected from the crack involve
not only the m = 0 modes, which correspond to the incident wave m = 0, n = 1, but also, due to mode
conversions, the m =1 modes. Overall, it appears that different circumferential crack lengths can be de-
tected more readily if the m =0, n =1 and m = 0, n = 2 modes are used below and above the first cutoff
frequency, respectively.

Fig. 6 presents the reflection and transmission coefficients for Q = 3 as functions of the crack depth, D,
when the circumferential crack length is a constant L = 1 (i.e. axisymmetry holds). |Ry; o2| and |71 01| show a
characteristic monotonic increase and decrease with D, respectively. Conversely, |Ro1 01| and |7y 2| each
have maxima around D = 0.3. On the whole, |Ro; 02| and |Tj; 01| are most sensitive to changes in D.

Fig. 7 gives the reflection and transmission coefficients as the crack length increases for D = 0.5. It is seen
that the reflection coefficients |Ro; .|, » = 1, 2, 3, increase linearly with the crack length L, which is a similar
behavior to that found for the isotropic steel cylinder. Moreover |Ry; p2| and |Tp; 01| again dominate the
reflected and transmitted fields, respectively, when Q = 3.

Results for the F(1, 1) rather than the L(0, 1) incident mode are shown in Figs. 8-10. The sharp peak at
the first cutoff frequency, Q = 2.523, is clearly noticeable again in Fig. 8. Moreover, observations noted
previously for |Ry; o1| can be made from Figs. 9 and 10 for the analogous |R;; 11|. However, those made for
|Ro1.02| surprisingly pertain now to |Ry; 13| rather than |Ry; j»|. Therefore straightforward extrapolations are
not always applicable when interchanging the L(0,1) and F(1, 1) incident waves.
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Fig. 9. Reflection and transmission coefficients, |Ry; 1,| and |71 1,|, as functions of normalized crack depth, D, in a 2-ply [0/90] graphite/
epoxy cylinder at @ =3.0: H/R=0.1, and L = 1.0.
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Fig. 10. Reflection and transmission coefficients, |Ryj .| and |Tj; .|, as functions of normalized crack length, L, in a 2-ply [0/90]
graphite/epoxy cylinder at Q@ = 3.0: H/R = 0.1, and D =0.5.

4. Conclusions

A numerical procedure to efficiently represent a planar, circumferential crack in an isotropic cylin-
der has been extended to a cylindrically orthotropic material with little computational or error penalties.
A virtually non-dispersive mode is chosen as an incident wave whose scattering may be used to detect
or dimension a crack. The numerical results presented here confirm that the choice and frequency of
such a wave is important because different incident waves produce a dissimilar pattern of mode con-
versions.

Acknowledgements

The first author would like to acknowledge the financial support from the University of Manitoba
through a graduate fellowship award. AHS and NP would like to acknowledge the financial support of the
Natural Science of Engineering Research Council of Canada. SKD would like to acknowledge the support
provided by the Engineering Research Program, Office of Basic Energy Sciences, U.S. Department of
Energy (DE-FG03-97ER 14738).



H. Buai et al. | International Journal of Solids and Structures 39 (2002) 45834603 4603
References

Alleyne, D.N., Lowe, M.J.S., Cawley, P., 1998. The reflection of guided waves from circumferential notches in pipes. ASME Journal of
Applied Mechanics 65, 635-641.

Bai, H., Shah, A.H., Popplewell, N., Datta, S.K., 2001. Scattering of guided waves by circumferential cracks in steel pipes. ASME
Journal of Applied Mechanics 68, 619-631.

Bathe, K.J., 1982. Finite Element Procedures in Engineering Analysis. Prentice-Hall Inc, Englewood Cliffs, New York.

Datta, S.K., 2000. Wave propagation in composite plates and shells. In: Chou, T.W. (Ed.), Comprehensive Composite Materials,
vol. 1. Elsevier, Oxford (Chapter 18).

Huang, K.H., Dong, S.B., 1984. Propagating waves and edge vibrations in anisotropic composite cylinder. Journal of Sound and
Vibration 96 (3), 635-641.

Kohl, T., Datta, S.K., Shah, A.H., 1992. Axially symmetric pulse propagation in semi-infinite hollow cylinders. AIAA Journal 30,
1617-1624.

Lowe, M.J.S., Alleyne, D.N., Cawley, P., 1998. The mode conversion of a guided wave by a part—circumferential notch in a pipe.
ASME Journal of Applied Mechanics 65, 649-656.

Pan, E., Rogers, J., Datta, S.K., Shah, A.H., 1999. Mode selection of guided waves for ultrasonic inspection of gas pipelines with thick
coating. Mechanics of Materials 31, 165-174.

Rattanawangcharoen, N., 1993. Propagation and Scattering of Elastic Waves in Laminated Circular Cylinders. Ph.D. thesis,
University of Manitoba, Winnipeg, Canada.

Rattanawangcharoen, N., Shah, A.H., Datta, S.K., 1994. Reflection of waves at the free edge of a laminated circular cylinder. ASME
Journal of Applied Mechanics 61, 323-329.

Rattanawangcharoen, N., Zhuang, W., Shah, A.H., Datta, S.K., 1997. Axisymmetric guided waves in jointed laminated cylinders.
ASCE Journal of Engineering Mechanics 123, 1020-1026.

Zhuang, W., Shah, A.H., Datta, S.K., 1997. Axisymmetric guided wave scattering by cracks in welded steel pipes. ASME Journal of
Pressure Vessel Technology 19, 401-406.

Zhuang, W., Shah, A.H., Dong, S.B., 1999. Elastodynamic Green’s function for laminated anisotropic circular cylinders. ASME
Journal of Applied Mechanics 66, 665-674.



	Scattering of guided waves by circumferential cracks in composite cylinders
	Introduction
	Formulation
	Wave modes
	Modal expansion
	Governing equations for the scattering problem
	Reduction to quasi-one-dimensional problem

	Numerical results and discussion
	Conclusions
	Acknowledgements
	References


